Abstract
The recent trend in squirrel cage induction motor manufacturing is to replace fabricated copper rotors with aluminum die-cast rotors to reduce manufacturing cost to stay competitive in the global market. Porosity in aluminum die-cast squirrel cage rotors is inevitably introduced during the die cast process. Porosity can cause degradation in motor performance and can lead to a forced outage causing irreversible damage in extreme cases. Many offline and online quality assurance test methods have been developed and applied for assessment of rotor quality. However, years of experience with the existing test methods revealed that they are not suitable for quality testing or capable of providing a quantitative assessment of rotor porosity with sufficient sensitivity. In this paper, a new offline test method capable of providing sensitive assessment of rotor porosity is proposed. It is shown that rotors with minor and distributed porosity that are difficult to detect with other tests can be screened out during manufacturing. The proposed method is verified through a 3-D finite element analysis and experimental testing on closed and semiopen slot aluminum die cast rotors of 5.5 kW induction motors with porosity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.