Abstract

Nontarget analysis means that a sample is analysed without preselection of the studied analytes. While target analysis attempts to determine whether certain selected compounds are present in the sample, nontarget analysis is performed to explore what unknown compounds can be found. We developed a nontarget method using a landfill leachate sample as a complex test sample. The method was based on the use of a gas chromatograph–time-of-flight mass spectrometer (GC–TOF–MS) for final analysis and a deconvolution computer application for data processing. This nontarget analysis method was tested and validated by applying it to a landfill leachate sample spiked with 11 organic pollutants that were treated as unknowns. Sensitivity was found to be the most critical parameter affecting the success of nontarget analysis. The limit of identification (LOI) was 2500ngL−1 for four of the 11 compounds, 500ngL−1 for three compounds and 100ngL−1 for one compound. Three compounds were not detected in any of the spiked samples. A six-stage identification process was developed based on the spiking experiments. The process was based on the forward fit value of the library hit, the number of deconvoluted ions and the accurate mass scoring of the measured ions. The process was applied to an unspiked leachate water sample. Altogether, 44 compounds were tentatively identified in the sample. Elemental compositions of 36 components were additionally determined for which an unequivocal compound identification could not be given. Nontarget analysis with GC–TOF–MS is a promising method for the qualitative analysis of complex water samples. However, we conclude that the computer application for nontarget analysis needs improvement to decrease the amount of manual work needed in the identification process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.