Abstract

Green Peter Dam is a concrete gravity structure located in west-central Oregon within the Willamette River Valley Basin. A risk assessment identified continuous and adversely oriented low-angled shears underlying portions of the foundation that could potentially facilitate instability of one or more monoliths during earthquake loading. Conceptually, a potential foundation rock wedge could form with a shear zone as its sliding surface and joints as the side planes. This wedge, which has otherwise been stable under static conditions, could feasibly be displaced and/or shifted during seismic ground shaking resulting in significant structural damage and/or breach of the dam. A qualitative evaluation was performed to characterize the geomechanical conditions and geometry of movement (i.e. kinematics) of the dam-foundation system associated with rock wedges. The study revealed that wedges could indeed be formed by adversely oriented and intersecting rock mass discontinuities but concluded that the displacement geometry and geologic conditions suggest that the wedges would likely be stable under even large probabilistic seismic loading. While no concrete dams are known to have failed due to seismic loading, an increased knowledge of higher seismicity in the Pacific Northwest region warranted a careful evaluation to assure the risks of foundation rock wedge deformation is well-characterized, and that our level of confidence in the available data is acceptable to better constrain the potential risk posed by this failure mode. This paper summarizes the background, findings, and results of the preliminary and qualitative dam-foundation system stability evaluation that was performed for Green Peter Dam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.