Abstract
A dichotomy is proved concerning recurrence properties of the solution of certain stochastic delay equations. If the solution process is recurrent, there exists an invariant measure π on the state space C which is unique (up to a multiplicative constant) and the tail-field is trivial. If π happens to be a probability measure, then for every initial condition, the distribution of the process converges to it as t→∞. We will formulate a sufficient condition for the existence of an invariant probability measure (ipm) in icrnia of Lyapunov junctionals and give two examples, one Heing the stochastic-delay version of the famous logistic equation of population growth. Finally we study approximations of delay equations by Markov chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.