Abstract
This work is interested in constructing new traveling wave solutions for the coupled nonlinear Schrödinger type equations. It is shown that the equations can be converted to a conservative Hamiltonian traveling wave system. By using the bifurcation theory and Qualitative analysis, we assign the permitted intervals of real propagation. The conserved quantity is utilized to construct sixteen traveling wave solutions; four periodic, two kink, and ten singular solutions. The periodic and kink solutions are analyzed numerically considering the effect of varying each parameter keeping the others fixed. The degeneracy of the solutions discussed through the transmission of the orbits illustrates the consistency of the solutions. The 3D and 2D graphical representations for solutions are presented. Finally, we investigate numerically the quasi-periodic behaviour for the perturbed system after inserting a periodic term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.