Abstract

The sparse grid collocation method is discussed to qualify the uncertainty of solute transport. The Karhunen-Loeve (KL) expansion is employed to decompose the log transformed hydraulic conductivity. The head, velocity and concentration fields are represented by the Lagrange polynomial expansion. A sparse grid collocation method is then used to reduce the original stochastic partial differential equations to a set of deterministic equations which is collocated at selected interpolation (collocation) points. The collocation points are constructed by the Smolyak algorithm. The accuracy, efficiency and convergence property of sparse grid collocation method are investigated by numerical experiments. The analysis shows that stochastic collocation strategy helps to decouple stochastic computations, and all the numerical computation is possible to be implemented by existing deterministic finite element codes. The proposed method provides an efficient way to evaluate the uncertainty of the solute transport in the heterogeneous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.