Abstract

A new equation of state relating the macroscopic quadrupole moment density $Q$ to the gradient of the field $\nabla E$ in an isotropic fluid is derived: $Q = \alpha_Q(\nabla E - U \nabla.E/3)$, where the quadrupolarizability $\alpha_Q$ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length $L_Q$ is determined, $L_Q = \sqrt{\alpha_Q/3\epsilon}= 1-2 {\AA}$. Further, the extended Debye-H\uckel model is generalized to ions in a quadrupolar solvent. If quadrupole terms are allowed in the macroscopic Coulomb law, they result in suppression of the gradient of the electric field. In result, the electric double layer is slightly expanded. The activity coefficients obtained within this model involve three characteristic lengths: Debye length, ion radius and quadrupolar length $L_Q$. Comparison to experimental data shows that minimal distance between ions is equal to the sum of their bare ion radii; the concept for ion hydration as an obstacle for ions to come into contact is not needed for the understanding of the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.