Abstract

Using multiple stochastic integrals and Malliavin calculus, we analyze the quadratic variations of a class of Gaussian processes that contains the linear stochastic heat equation on $\mathbf{R}^{d}$ driven by a non-white noise which is fractional Gaussian with respect to the time variable (Hurst parameter $H$) and has colored spatial covariance of $\alpha $-Riesz-kernel type. The processes in this class are self-similar in time with a parameter $K$ distinct from $H$, and have path regularity properties which are very close to those of fractional Brownian motion (fBm) with Hurst parameter $K$ (in the heat equation case, $K=H-(d-\alpha )/4$ ). However the processes exhibit marked inhomogeneities which cause naive heuristic renormalization arguments based on $K$ to fail, and require delicate computations to establish the asymptotic behavior of the quadratic variation. A phase transition between normal and non-normal asymptotics appears, which does not correspond to the familiar threshold $K=3/4$ known in the case of fBm. We apply our results to construct an estimator for $H$ and to study its asymptotic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.