Abstract

This paper addresses the classical and discrete Euler–Lagrange equations for systems of n particles interacting quadratically in Rd. By highlighting the role played by the center of mass of the particles, we solve the previous systems via the classical quadratic eigenvalue problem (QEP) and its discrete transcendental generalization. Next, we state a conditional convergence result, in the Hausdorff sense, for the roots of the discrete QEP to the roots of the classical one. At last, we focus especially on periodic and choreographic solutions and we provide some numerical experiments which confirm the convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.