Abstract
The map locations and effects of quantitative trait loci (QTLs) were estimated for eight flower and fruit traits in sour cherry (Prunus cerasus L.) using a restriction fragment length polymorphism (RFLP) genetic linkage map constructed from a double pseudo-testcross. The mapping population consisted of 86 progeny from the cross between two sour cherry cultivars, Rheinische Schattenmorelle (RS)×Erdi Botermo (EB). The genetic linkage maps for RS and EB were 398.2 cM and 222.2 cM, respectively, with an average interval length of 9.8 cM. The RS/EB linkage map that was generated with shared segregating markers consisted of 17 linkage groups covering 272.9 cM with an average interval length of 4.8 cM. Eleven putatively significant QTLs (LOD >2.4) were detected for six characters (bloom time, ripening time, % pistil death, % pollen germination, fruit weight, and soluble solids concentration). The percentage of phenotypic variation explained by a single QTL ranged from 12.9% to 25.9%. Of the QTLs identified for the traits in which the two parents differed significantly, 50% had allelic effects opposite to those predicted from the parental phenotype. Three QTLs affecting flower traits (bloom time, % pistil death, and % pollen germination) mapped to a single linkage group, EB 1. The RFLP closest to the bloom time QTL on EB 1 was detected by a sweet cherry cDNA clone pS141 whose partial amino acid sequence was 81% identical to that of a Japanese pear stylar RNase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.