Abstract

Computational approaches for the prediction of environmental pollutants' properties have great potential in rapid environmental risk assessment and management with reduced experimental cost. A quantitative structure–property relationship (QSPR) study was conducted to predict the heat of fusion of a set of organic compounds that have adverse effect on the environment. The forward selection (FS) strategy was used for descriptors selection. We examined the feasibility of using multiple linear regression (MLR), artificial neural networks (ANN) and Bayesian regularized artificial neural networks (BRANN) as linear and nonlinear methods. The QSPR models were validated by an external set of compounds that were not used in the model development stage. All models reliably predicted the heat of fusion of the organic compounds under study, whereas more accurate results were obtained by the BRANN model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.