Abstract

Studies on glutamine (Gln) metabolism have highlighted the vital role of Gln in cellular functions and its potential as a biomarker for disease detection. Despite the increasing interest in Gln metabolism, in-depth evaluations are challenging owing to the limitations of conventional Gln-measuring methods. Thus, we developed a ligand-induced dimerization-based sensor for Gln, termed Q-SHINE, by splitting a glutamine-binding protein into two separate domains. Q-SHINE enables the highly accurate and convenient measurement of Gln concentrations in bio-fluid samples, with an optimal detection range for physiological Gln levels. Genetically encoded Q-SHINE sensors could also visualize intracellular Gln levels and quantify cytoplasmic and mitochondrial Gln changes in living cells, enabling the detection of various cell responses to extracellular Gln supplementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.