Abstract

Anisotropy and Q attenuation bring great challenges to seismic wave migration. On migrated images, anisotropy creates structural and positioning errors, and Q attenuation leads to weak amplitudes and misplacement of reflectors. A 2D Q-compensated least-squares reverse time migration with velocity-anisotropy correction ( QLSRTM-VA) is proposed through the construction of velocity-anisotropic Q-compensated forward modeling, Q-compensated adjoint, and Q-attenuated demigration operators to simultaneously correct velocity-anisotropy and Q-attenuation in the migration process. The preceding operators are derived using first-order velocity-anisotropic viscoacoustic quasi-differential wave equations with variable densities, which are stable, capable of conveniently dealing with variable density media and are easy to transform between velocity-anisotropic Q-compensation and Q-attenuation versions. As exemplified by two synthetic and field data sets, our QLSRTM-VA method increases the imaging resolution, signal-to-noise ratio, and amplitude preservation in deep regions. Our method is capable of producing better images than viscoacoustic isotropic least-squares reverse time migration (LSRTM) and acoustic anisotropic LSRTM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.