Abstract

One-step syntheses are reported of 4′-(pyrrol-2-yl)-2,2′;6′,2″-terpyridine, 4-(pyrrol-2-yl)-2,6-di(pyrazol-2-yl)pyridine and of their homoleptic Ru(II) complexes, in good to very good yields. DFT calculations confirmed that the pyrrole rings lay coplanar with the tridentate cores and constituted effective π-donors, but also showed that the properties of the Ru(II) complexes defied classical analyses based on localized metal- or ligand-centred orbitals. The low-potential electrochemical oxidations led to electropolymerization but were not purely pyrrole-centred. The low-energy electronic spectral absorptions were not purely metal-to-ligand charge transfer (MLCT) in character, but resulted from mixed metal-to-ligand and intraligand transitions. The complexes’ photosensitization abilities showed that the pyrrole groups were beneficial to the survival of the photoexcited states, albeit not as much as p-tolyl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.