Abstract

Sponge diseases have been widely reported, yet the causal factors and major pathogenic microbes remain elusive. In this study, two individuals of the sponge Crella cyathophora in total that showed similar disease-like characteristics were collected from two different locations along the Red Sea coast separated by more than 30 kilometers. The disease-like parts of the two individuals were both covered by green surfaces, and the body size was much smaller compared with adjacent healthy regions. Here, using high-throughput pyrosequencing technology, we investigated the prokaryotic communities in healthy and disease-like sponge tissues as well as adjacent seawater. Microbes in healthy tissues belonged mainly to the Proteobacteria, Cyanobacteria and Bacteroidetes, and were much more diverse at the phylum level than reported previously. Interestingly, the disease-like tissues from the two sponge individuals underwent shifts of prokaryotic communities and were both enriched with a novel clade affiliated with the phylum Verrucomicrobia, implying its intimate connection with the disease-like Red Sea sponge C. cyathophora. Enrichment of the phylum Verrucomicrobia was also considered to be correlated with the presence of algae assemblages forming the green surface of the disease-like sponge tissues. This finding represents an interesting case of sponge disease and is valuable for further study.

Highlights

  • IntroductionSponges (phylum Porifera) are one of the oldest and most primitive metazoans (Hedges et al, 2004)

  • Sponges are one of the oldest and most primitive metazoans (Hedges et al, 2004)

  • Sponges can be grouped into high microbial abundance (HMA; previously called bacteriosponges) and low microbial abundance (LMA) sponges based on the density of microbes in the host (Hentschel et al, 2003)

Read more

Summary

Introduction

Sponges (phylum Porifera) are one of the oldest and most primitive metazoans (Hedges et al, 2004). They are distributed globally and are widely known to be associated with. Reports have shown that microbes can constitute up to 60% of the sponge tissue volume (Hentschel et al, 2003). In recent years, pyrosequencing technology has facilitated environmental microbial research and increased our knowledge concerning sponge-associated microbial diversity (Webster & Taylor, 2012). Sponges can be grouped into high microbial abundance (HMA; previously called bacteriosponges) and low microbial abundance (LMA) sponges based on the density of microbes in the host (Hentschel et al, 2003)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.