Abstract
Significant efforts have been spent determining or monitoring interlayer temperatures (IT) to increase quality in Wire Arc Additive Manufacturing (WAAM). However, an uneven thermal profile in the wall and a temperature gradient along the layer length are expected after a thin wall layer deposition, questioning the effectiveness of IT and its measuring approaches. After identifying the holistic meaning of IT, this work aimed at confronting two strategies using infrared pyrometers, elucidating their advantages and limitations for both open and closed-loop control. The proposed Upper and Sideward Pyrometer strategies were presented in detail and then assessed at different distances from the heat source. A calibration procedure was proposed. The results confirmed the existence of a natural temperature gradient along the wall. In addition, they showed how differently the arc heat affects the measured points (in intensity and steadiness) according to the strategy. Therefore, the interlayer temperature measured at a specific point on a part manufactured by WAAM should be taken as a reference and not an absolute value; the absolute value changes according to the measuring approach, sensor positioning and calibration. Using a temperature reference, both strategies can be used in open-loop control to reach repeatability (geometrical and metallurgical) between layers. However, the Sideward Pyrometer strategy is more recommended for feedback control of production, despite being less flexible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.