Abstract
In this paper, an ultrastable Y-type (USY) zeolite was investigated with two-staged pyrolysis–catalysis of waste tyres. Waste tyres were pyrolysed in a fixed bed reactor and the evolved pyrolysis gases were passed through a secondary catalytic reactor. The main objective of this paper was to obtain high concentration of certain aromatic hydrocarbons suitable to be used as a chemical feedstock rather than a liquid fuel, and the influence of catalyst/tyre ratio on the product yield and composition of derived oils. The light fraction (boiling point < 220 °C) was distilled from the derived oil prior to be analyzed with gas chromatography/mass spectrometry (GC/MS). It showed that the increase of catalyst/tyre ratio resulted in high yield of gas at the expense of the oil yield. The high catalyst/tyre ratio favored to increase the concentration of light fraction (<220 °C) in oil. Increasing the catalyst/tyre ratio resulted in significant changed in the concentration of benzene, toluene, xylenes and the alkyl aromatic compounds. For benzene and toluene, the highest concentration was obtained at the catalyst/tyre ratio of 0.5. The concentration of xylenes increased with the increasing of catalyst/tyre ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.