Abstract

The potential of seven kraft cook materials to become functional char materials and fuels is investigated. Thermogravimetric analysis was used to study the thermal properties while a model-free isoconversional method was used to derive kinetic rate expressions. Black liquor precipitates had lower thermal stability (20–60K lower) than pulps and spruce wood and the precipitates decomposed in a wider temperature range, producing chars with similar or higher thermal stability than char from pulps, but lower than those from spruce wood. Samples suitable to produce char were identified based on char yield, devolatilization rate and charring temperature. The highest char yield (46%), achieved from a precipitate, was more than twice as high as that from spruce powder. Under the studied conditions none of the materials had a pyrolysis process that for the whole conversion range could be described with a single set of kinetic parameters. The apparent activation energy varied between 170–260kJ/mol for the pulps and 50–650kJ/mol for the precipitates. The derived kinetic parameters were validated by predicting the conversion at a heating rate outside the range used for its derivation and at quasi-isothermal conditions. Both these tests gave satisfactory results in good agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.