Abstract

We study the S=1/2 Heisenberg antiferromagnet on the pyrochlore lattice in the limit of strong easy-axis exchange anisotropy. We find, using only standard techniques of degenerate perturbation theory, that the model has a U(1) gauge symmetry generated by certain local rotations about the z-axis in spin space. Upon addition of an extra local interaction in this and a related model with spins on a three-dimensional network of corner-sharing octahedra, we can write down the exact ground state wavefunction with no further approximations. Using the properties of the soluble point we show that these models enter the U(1) spin liquid phase, a novel fractionalized spin liquid with an emergent U(1) gauge structure. This phase supports gapped S^z = 1/2 spinons carrying the U(1) ``electric'' gauge charge, a gapped topological point defect or ``magnetic'' monopole, and a gapless ``photon,'' which in spin language is a gapless, linearly dispersing S^z = 0 collective mode. There are power-law spin correlations with a nontrivial angular dependence, as well as novel U(1) topological order. This state is stable to ALL zero-temperature perturbations and exists over a finite extent of the phase diagram. Using a convenient lattice version of electric-magnetic duality, we develop the effective description of the U(1) spin liquid and the adjacent soluble point in terms of Gaussian quantum electrodynamics and calculate a few of the universal properties. The resulting picture is confirmed by our numerical analysis of the soluble point wavefunction. Finally, we briefly discuss the prospects for understanding this physics in a wider range of models and for making contact with experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.