Abstract

Comparisons on the bioleaching and sterile oxidation of pyrite were performed at controlled redox potential of 900 mV (vs. SHE) and different temperatures of 30 and 60 °C. For sterile experiments, the redox potential of irrigation solution was controlled by adding hydrogen peroxide solution (15 wt%), while the redox potential of irrigation solution for bioleaching was elevated by flowing through the packed bed in which bacteria were activated and colonized. The rate of pyrite bioleaching is faster than that of sterile oxidation at temperature of 30 °C. The reason is that the potential gradient of leaching solution in bioleaching column is much smaller than that in sterile column. The redox potentials of irrigation solution and leaching solution are similar for bioleaching; however, the redox potential difference of irrigation solution and leaching solution for sterile oxidation is about 150 mV. When temperature increases to 60 °C for sterile oxidation, the rate of pyrite leaching is faster than that of bioleaching at temperature of 30 °C, even though the redox potential gradient of leaching solution is great. The mineralogy analyses of pyrite residue were performed by scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The results confirm that pyrite oxidation might only occur at specific sites with high surface energy on surface and obeys the “indirect mechanism” whether there are bacteria or not. The pyrite oxidation rate is not inhibited by inert sulfur on residue surface at elevated redox potential. According to the conclusions, the way to accelerate pyrite oxidation is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.