Abstract

The effect of pyridoxal 5'-phosphate on the binding of the ecdysteroid receptor from a nuclear extract of Drosophila melanogaster to DNA-cellulose was studied. The binding of hormone-receptor complexes to DNA-cellulose was completely blocked after a 30-min incubation with 3 mM pyridoxal 5'-phosphate at 0-4 degree C. The effect was specific for pyridoxal 5'-phosphate since related compounds (pyridoxal, pyridoxamine 5'-phosphate and pyridoxamine) were not effective or gave only 17% inhibition (pyridoxal). Under standard conditions, none of the compounds tested exerted a significant effect on the stability of [3H](20R,22R)-2 beta,3 beta, 14 alpha,20,22-pentahydroxy-5 beta-cholest-7-en-6-one ([3H]ponasterone A)-receptor complexes. The loss of DNA-binding activity caused by pyridoxal 5'-phosphate is accompanied by changes in the molecular properties of [3H]ponasterone-A-receptor complexes. A shift of [3H]ponasterone-A binding was observed from the 8.0-8.5 S to the 4.5-5.0 S region, when [3H]ponasterone-A-receptor complexes were exposed to pyridoxal 5'-phosphate during sucrose-gradient centrifugation. The inhibition of DNA-cellulose binding by pyridoxal 5'-phosphate can be reversed. Probably, pyridoxal 5'-phosphate forms a Schiff base with a critical lysine group of the ecdysteroid receptor, presumably at its DNA-binding site. The hormone-receptor complexes obtained after removal of pyridoxal 5'-phosphate had the same affinity for DNA-cellulose as 'native' complexes. DNA-cellulose-bound [3H]ponasterone-A complexes were efficiently eluted from DNA-cellulose with pyridoxal 5'-phosphate in 0.1 M KCl resulting in a 104-fold purification of the ecdysteroid receptor. The results reflect possible structural similarities between ecdysteroid and vertebrate steroid receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.