Abstract
BackgroundInsecticide resistance can present a major obstacle to malaria control programmes. Following the recent detection of DDT resistance in Anopheles arabiensis in Gokwe, Zimbabwe, the underlying resistance mechanisms in this population were studied.MethodsStandard WHO bioassays, using 0.75% permethrin, 4% DDT, 5% malathion, 0.1% bendiocarb and 4% dieldrin were performed on wild-collected adult anopheline mosquitoes and F1 progeny of An. arabiensis reared from wild-caught females. Molecular techniques were used for species identification as well as to identify knockdown resistance (kdr) and ace-1 mutations in individual mosquitoes. Biochemical assays were used to determine the relative levels of detoxifying enzyme systems including non-specific esterases, monooxygenases and glutathione-S-transferases as well as to detect the presence of an altered acetylcholine esterase (AChE).ResultsAnopheles arabiensis was the predominant member of the Anopheles gambiae complex. Of the 436 An. arabiensis females, 0.5% were positive for Plasmodium falciparum infection. WHO diagnostic tests on wild populations showed resistance to the pyrethroid insecticide permethrin at a mean mortality of 47% during February 2006 and a mean mortality of 68.2% in January 2008. DDT resistance (68.4% mean mortality) was present in February 2006; however, two years later the mean mortality was 96%. Insecticide susceptibility tests on F1 An. arabiensis families reared from material from two separate collections showed an average mean mortality of 87% (n = 758) after exposure to 4% DDT and 65% (n = 587) after exposure to 0.75% permethrin. Eight families were resistant to both DDT and permethrin. Biochemical analysis of F1 families reared from collections done in 2006 revealed high activity levels of monooxygenase (48.5% of families tested, n = 33, p < 0.05), glutathione S-transferase (25.8% of families tested, n = 31, p < 0.05) and general esterase activity compared to a reference susceptible An. arabiensis colony. Knockdown resistance (kdr) and ace-IR mutations were not detected.ConclusionThis study confirmed the presence of permethrin resistance in An. arabiensis populations from Gwave and emphasizes the importance of periodic and ongoing insecticide susceptibility testing of malaria vector populations whose responses to insecticide exposure may undergo rapid change over time.
Highlights
Insecticide resistance can present a major obstacle to malaria control programmes
In order to manage bed bug resistance DDT and deltamethrin were used interchangeably for malaria vector and tsetse fly control from 1987 until 1991, when environmentalists succeeded in lobbying against its use
This paper reports on the vector status of An. arabiensis and its susceptibility to insecticides in Gokwe
Summary
Insecticide resistance can present a major obstacle to malaria control programmes. Anopheles arabiensis is the main malaria vector in Zimbabwe [4,5]. The principal malaria intervention strategies in Zimbabwe include case management, vector control such as indoor residual spraying (IRS), and health education [1]. House spraying remains the Ministry of Health and Child Welfare's (MHCW) principal strategy for malaria vector control and malaria prevention. BHC was replaced with DDT after the discovery of a BHC resistant population of An. arabiensis in the lowveld of the country [7]. After independence malaria vector control using DDT resumed. In order to manage bed bug resistance DDT and deltamethrin were used interchangeably for malaria vector and tsetse fly control from 1987 until 1991, when environmentalists succeeded in lobbying against its use. DDT has been re-introduced for adult vector control to complement the pyrethroid arsenal which includes deltamethrin, lambdacyhalothrin and alphacypermethrin
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.