Abstract

Pyramid wavefront sensors offer an alternative to traditional Hartmann sensing for wavefront measurement in astronomical adaptive optics systems. The Pyramid sensor has been described as a slope sensor with potential sensitivity gains over the Shack Hartmann sensor, but in actuality seems to exhibit traits of both a slope sensor and a direct phase sensor. The original configuration, utilizing glass pyramids and modulation techniques, is difficult to implement. We present results of laboratory experiments using a Pyramid sensor that utilizes a micro-optic lenslet array in place of a glass pyramid, and does not require modulation. A group of four lenslets forms both the pyramid knife-edge and the pupil reimaging functions. The lenslet array is fabricated using a technique that pays careful attention to the quality of the edges and corners of the lenslets. The devices we have tested show less than 1 micron edge and corner imperfections, making them some of the sharpest edges available. We finish by comparing our results to theoretical wave optic predictions which clearly show the dual nature of the sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.