Abstract
The assessment of the radiolytic stability of media is an important task in the fields of nuclear power engineering and radiochemistry. Such studies must be carried out in special laboratory conditions with the use of sources of ionizing radiation, which may increase personal doses of the staff. In addition, difficulties arise in studying the products of irradiated media. While it is impossible to abandon experiments to obtain reliable results in this area, computational methods of quantum chemistry can reduce the number of experiments and help understand the mechanisms of the reactions that occur during radiolysis. Here we would like to present a software shell of the Qb@ll program performing time-dependent density functional theory simulations of the radiolysis process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.