Abstract

The authors synthesized a fluorine-containing Ir(III) complex Ir(PTZ)2(HFD) and the corresponding composite electrospinning fibers [email protected](PTZ)2(HFD), where PTZ, HFD and PVP stood for 2-phenylbenzo[d]thiazole, 1,1,1,5,5,5-hexafluoropentane-2,4-dione and poly(vinylpyrrolidone), respectively. The molecular structure of the Ir(III) complex was confirmed by its single crystal analysis, which suggested that Ir(PTZ)2(HFD) molecules crystallized as monoclinic system with two molecules in each unit cell. Density functional theory calculation on the crystal revealed that the onset electronic transitions possessed a mixed character of metal-to-ligand-charge-transfer (MLCT) and ligand-to-ligand-charge-transfer (LLCT). Ir(PTZ)2(HFD) was then doped into electrospinning fibers so that the photophysical comparison between bulk Ir(PTZ)2(HFD) and composite samples could be performed. It was found that both face-to-face π–π attraction in crystal and the immobilization in PVP host could improve photoluminescence performance by restraining the geometric relaxation of MLCT excited state, showing emission blue shift, longer excited state lifetime and improved photostability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.