Abstract

AbstractThe photoelectrochemical performance of the WO3 photoanode is limited by the severe charge recombination in the bulk phase and at the WO3/electrolyte interface. Herein, In2S3 nanosheets are integrated onto the surface of the WO3 nanowall array photoanode, followed by a facile polyvinylpyrrolidone (PVP) solution treatment. The PVP treatment results in sulfur vacancies and a gradient oxygen doping into In2S3 from surface to interior, which induces the formation of a gradient energy band distribution. The gradient band structured In2S3 and type II band alignment at the WO3/In2S3 interface simultaneously create a channel that favors photogenerated electrons to migrate from the surface to the conductive substrate, thereby suppressing bulk carrier recombination. Meanwhile, the sulfur vacancies and oxygen doping contribute to increased charge carrier concentration, prolonged carrier lifetime, more active sites, and small interfacial transfer impedance. As a consequence, the PVP treated WO3/In2S3 heterostructure photoanode exhibits a significantly enhanced photocurrent of 1.61 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE) and negative onset potential of 0.02 V versus RHE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.