Abstract

We consider pushdown timed automata (PTAs) that are timed automata (with dense clocks) augmented with a pushdown stack. A configuration of a PTA includes a state, dense clock values and a stack word. By using the pattern technique, we give a decidable characterization of the binary reachability (i.e., the set of all pairs of configurations such that one can reach the other) of a PTA. Since a timed automaton can be treated as a PTA without the pushdown stack, we can show that the binary reachability of a timed automaton is definable in the additive theory of reals and integers. The results can be used to verify a class of properties containing linear relations over both dense variables and unbounded discrete variables. The properties previously could not be verified using the classic region technique nor expressed by timed temporal logics for timed automata and CTL ∗ for pushdown systems. The results are also extended to other generalizations of timed automata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.