Abstract

Extracellular nucleoside and nucleotides acting via adenosine/P1 and nucleotide P2 (P2X/P2Y) purinoceptors are fundamental signaling molecules controlling the survival and proliferation of astrocytes and oligodendrocytes (Ceruti & Abbracchio, Adv Exp Med Biol 986:13, 2013). The malignant transformation of these cells to progressively more aggressive tumors (respectively, astrocytomas and anaplastic glioblastoma, and glioblastoma multiforme, containing proliferating cells resembling Oligodendrocytes Precursor Cells, OPCs) confers growth advantage and chemoresistance. Characterization of the specific P1 and P2 receptors on these tumors may unveil new strategies to reduce cancer growth and/or promote differentiation to non-cancerous glial phenotypes. The adenosine A3 receptor (A3AR) has emerged as a potential target. Under hypoxia, a condition typical of gliomas’ core, A3AR mediates chemoresistance via the PKB/Akt pathway (leading to inactivation of the pro-apopototic Bad protein) and by upregulating matrix metalloproteinase-9, that degrades extracellular matrix and promotes migration of glioma cells towards healthy brain regions (Ceruti & Abbracchio and ref therein). Thus, inhibition of A3AR with selective antagonists could represent an appealing therapeutic approach. More recently, the P2X7 receptor has been recently found to be over-expressed in grade IV human gliomas (Monif et al., J Inflammation, 11:25, 2014) and its blockade with the synthetic antagonist Brilliant Blue G decreased tumour cell number. Finally, treatment of human glioblastoma multiforme cells with UDP, UDP-glucose or LTD4, that act as agonists at the new P2Y-like GPR17 receptor, reduced the formation of glioma spheres, suggesting that GPR17 stimulation on highly proliferating tumor OPCs may drive their differentiation to the oligodendroglial fate, negatively affecting both tumor proliferation and self-renewal (Dougherty et al., Cancer Res 72:4856, 2012).

Highlights

  • Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia

  • The results of the present study indicate that development of the neuronal hypoxic tolerance induced by the three-trial, in contrast to one-trial, mild hypoxic preconditioning is apparently largely associated with the activation of CREB, as well as brain-derived neurotrophic factor (BDNF) and Bcl-2 overexpression

  • No significant differences in serum level of Solubile form of RAGE (sRAGE) where found between rapidly progressing and slow progressing subgroup of multiple sclerosis (MS) patients.Our results suggest for the role of sRAGE in MS ethiopathogenesis, but we did not find any association of sRAGE in serum with the rate of MS disability progression

Read more

Summary

Introduction

Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia. The aim of the study was to characterize the effects of streptozocin (STZ)-indced diabetes on learning and memory of 5XFAD and wild-type (WT) mice in Morris water maze (MWM) at ages 2 and 6 months and on brain amyloid load. Existing evidence suggests GABAergic system is involved in pathophysiology of Alzheimer’s disease (AD) via inhibitory interneuron deficits (Verret et al, 2012) and decrease in functional GABAA receptors (Limon et al, 2012). Our concept: low doses of muscimol may prevent learning/memory deficits in intracerebroventricular (icv) streptozocin (STZ)-induced AD nontransgenic rat model. The Sigma-1 receptor is a chaperone protein that modulates intracellular calcium signalling of the endoplasmatic reticulum and is involved in learning and memory processes.The aim of the present study was to compare in vitro Ca2+ concentration modulating activity and in vivo behavioural effects of enantiomers of methylphenylpiracetam, a novel positive allosteric modulator of Sigma-1 receptors

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.