Abstract
To purify the heat shock protein (HSP) 70-associated tumor peptides and to observe its non-MHC-I molecule restrictive antitumor effect. By ConA-sepharose affinity chromatography, ADP-agarose affinity chromatography, and DEAE anion exchange chromatography, we were able to purify HSP70-associated peptides from mouse hepatoma (HCaF) cells treated in heat shock at 42 degrees. Specific active immunization and adoptive cellular immunization assay were adopted to observe the immunoprotective effect elicited by HSP70-associated peptide complexes isolated from HcaF. The finally purified HSP-associated peptides had a very high purity and specificity found by SDS-PAGE and Western blot. Mice immunized with HSP70-associated peptide complexes purified from HCaF cells were protected from HCaF living cell challenge. This effect was dose dependent. Adoptive immunization of immune spleen cells of mice immunized with HSP70-associated peptide complexes could elicit immunity against HCaF challenge, and the tumor-free mice could resist repeated challenges. This effect could be continuously enhanced by repeated challenge with HCaF living cells. The tumor-free mice could tolerate the challenge for as high as 1 x 10(7) HCaF cells. The mice immunized once with spleen cells pulsed with HSP70-associated peptide complexes in vitro could also result in a certain adoptive immunity against HCaF. High purity and specificity of HSP70-associated peptides could be achieved from tumor cells by the low-pressure affinity chromatography method used in this study. HSP70-associated peptide complexes derived from the HCaF can elicit non-MHC-I molecule restrictive immunoprotective effect against HCaF. This effect can be transferred by adoptive immunization to mice and enhanced by repeated challenge with HCaF live cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.