Abstract

The current study investigates a method for purification of the G-quadruplex secondary structure, naturally formed by a guanine-rich 21-mer oligonucleotide strand using a monolithic convective interaction media-quaternary amine (CIM-QA) column under ion-exchange conditions. The monolithic support was initially evaluated on a preparative scale against a highly efficient TSKgel SuperQ-5PW ion-exchange support designed for oligonucleotide purification. The CIM analogue demonstrated clear advantages over the particle-based support on the basis of rapid separation times, while also affording high purity of the G-quadruplex. Various parameters were investigated including the type of mobile phase anion, cation, pH and injection load to induce and control quadruplex formation, as well as enhance chromatographic separation and final purity. Potassium afforded the most prominent quadruplex formation, yet sodium allowed for the highest resolution and purity to be achieved with a 30 mg injection on an 8 ml CIM-QA monolithic column. This method was applied to purify in excess of 300 mg of the quadruplex, with excellent retention time precision of under 1% RSD. Native mass spectrometry was utilized to confirm the identity of the intact G-quadruplex under non-denaturing conditions, while ion-pairing reversed-phase methods confirmed the presence of the single-stranded oligonucleotide in high purity (92%) under denaturing conditions.The key advantage of the purification method enables isolation of the G-quadruplex in its native state on a milli-gram scale, allowing structural characterization to further our knowledge of its role and function. The G-quadruplex can also be subsequently denaturated at elevated temperature causing single strand formation if additional reactions are to be pursued, such as annealing to form a duplex, and evaluation in in vitro or in vivo studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.