Abstract

A novel ketoreductase isolated from Zygosaccharomyces rouxii catalyzes the asymmetric reduction of selected ketone substrates of commercial importance. The 37.8-kDa ketoreductase was purified more than 300-fold to > 95% homogeneity from whole cells with a 30% activity yield. The ketoreductase functions as a monomer with an apparent Km for 3,4-methylenedioxyphenyl acetone of 2.9 mM and a Km for NADPH of 23.5 microM. The enzyme is able to effectively reduce alpha-ketolactones, alpha-ketolactams, and diketones. Inhibition is observed in the presence of diethyl pyrocarbonate, suggesting that a histidine is crucial for catalysis. The 1.0-kb ketoreductase gene was cloned and sequenced from a Z. rouxii cDNA library using a degenerate primer to the N-terminal sequence of the purified protein. Furthermore, it was expressed in both Escherichia coli and Pichia pastoris and shown to be active. Substrate specificity, lack of a catalytic metal, and extent of protein sequence identity to known reductases suggests that the enzyme falls into the carbonyl reductase enzyme class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.