Abstract
ABSTRACTA self-flushing wet electrostatic precipitator was developed to investigate the removal performance for fine particles. Flexible material (polypropylene, 840A) and carbon steel in the form of a spiked band were adopted as the collection plate and discharge electrode, respectively. The particle concentration, morphology, and trace-element content were measured by electric low-pressure impactor, scanning electron microscope, and energy-dispersive x-ray spectroscopy, respectively, before and after the electrostatic precipitator. With increasing gas velocity, the collection efficiency of fine particles (up to 0.8 μm in diameter) increased, while it decreased for particles with diameters larger than 0.8 μm. Increasing the dust inlet concentration increased the collection efficiency up to a point, from which it then declined gradually with further increases in the inlet concentration. The particulate matter after the wet electrostatic precipitator showed different degrees of agglomeration. The collection efficiency of trace elements within PM10 was less than that of the PM10 itself. Notably, the water consumption in the current setup was significantly lower than for other treatment processes of comparable collection efficiencies.Implications: Wet electrostatic precipitators, as fine filtration equipment, were generally applicable to coal-fired plants to reduce PM2.5 emissions in China. However, high energy consumption and unstable operation, such as water usage and spray washing directly in the electric field, seriously restricted the further development. The utilization of self-flushing wet electrostatic precipitator can solve these problems to some extent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.