Abstract

Purified hepatic soluble guanylate cyclase (EC 4.6.1.2) had maximal specific activities in the unactivated state of 0.4 and 1 μmol cyclic GMP min −1 mg protein −1, when MgGTP and MnGTP, respectively, were used as substrates. The apparent K m for GTP was 85 or 10 μ m in the presence of excess Mg 2+ or Mn 2+, respectively. Guanylate cyclase purified as described was deficient in heme but could be readily reconstituted with heme by reacting enzyme with hematin and excess dithiothreitol at 4 °C and pH 7.8. Unpurified guanylate cyclase was activated 20- to 84-fold by NO, nitroso compounds, NO-heme, and protoporphyrin IX. The purified enzyme was only slightly (2- to 3-fold) activated by NO and nitroso compounds but was markedly (50-fold) activated by NO-heme and protoporphyrin IX, achieving maximal specific activities of 10 μmol cyclic GMP min −1 mg protein −1. Enzyme activation by NO and nitroso compounds was restored by addition of hematin or by reconstitution of guanylate cyclase with heme. Excess hematin, however, inhibited enzyme activity. A partially purified heat-stable factor (activation-enhancing factor) was found to enhance (2- to 35-fold) enzyme activation without directly stimulating guanylate cyclase. In the presence of optimal concentrations of hematin, enzyme activation was still increased (2-fold) by the activation-enhancing factor but not by bovine serum albumin. Guanylate cyclase was markedly inhibited by SH reactive agents such as cystine, o-iodosobenzoic acid, periodate, and 5,5′-dithiobis (2-nitrobenzoic acid). In addition, CN − and FMN inhibited enzyme activation by NO-heme, but not by protoporphyrin IX, and did not affect basal enzymatic activity. Hepatic soluble guanylate cyclase appears to possess SH groups required for catalysis and to require heme and/or other unknown factors for the full expression of enzyme activation by NO and nitroso compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.