Abstract

Two membranous c-type cytochromes from the Fe(III)-respiring bacterium Shewanella frigidimarina NCIMB400, CymA and OmcA, have been purified and characterized by UV-visible, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. The 20-kDa CymA is a member of the NapC/NirT family of multiheme cytochromes, which are invariably anchored to the cytoplasmic membrane of Gram-negative bacteria, and are postulated to mediate electron flow between quinols and periplasmic redox proteins. CymA was found to contain four low-spin c-hemes, each with bis-His axial ligation, and midpoint reduction potentials of +10, -108, -136, and -229 mV. The 85-kDa OmcA is located at the outer membrane of S. frigidimarina NCIMB400, and as such might function as a terminal reductase via interaction with insoluble Fe(III) substrates. This putative role is supported by the finding that the protein was released into solution upon incubation of harvested intact cells at 25 degrees C, suggesting an attachment to the exterior face of the outer membrane. OmcA was revealed by magneto-optical spectrocopies to contain 10 low-spin bis-His ligated c-hemes, with the redox titer indicating two sets of near iso-potential components centered at -243 and -324 mV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.