Abstract

In this study, peptides that facilitate alcohol metabolism were purified and identified from corn protein hydrolysates. The ultra-filtered fraction with a molecular weight < 3 kDa (F3) potential activity was separated into six fractions (F3-H1-F3-H6) by semi-preparative high-performance liquid chromatography. Among the resultant six fractions, F3-H4 and F3-H5 exhibited the highest ability to eliminate alcohol in vivo. A total of 16 peptides with strong signal values were identified from F3-H4 and F3-H5 fractions by nano liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Several identified peptides were then selected and synthesized to determine their potential to facilitate alcohol metabolism. We found that Leu-Leu and Pro-Phe were the key structure units in Gln-Leu-Leu-Pro-Phe responsible for this peptide's ability to facilitate alcohol metabolism. However, the role of Leu-Leu and Pro-Phe may be affected by peptide chain length and hydrophobic properties. Our results have thus provided some insight into the study of the structure-activity relationships of corn peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.