Abstract

A solvent tolerant Pseudomonas aeruginosa PseA strain was isolated from soil. It secreted a novel alkaline protease, which was stable and active in the presence of range of organic solvents, thus potentially useful for catalysis in non-aqueous media. The protease was purified 11.6-fold with 60% recovery by combination of ion exchange and hydrophobic interaction chromatography using Q-Sepharose and Phenyl Sepharose 6 Fast Flow matrix, respectively. The apparent molecular mass based on the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was estimated to be 35,000 Da. The enzyme was stable in the pH range of 6.0–9.0, the optimum being 8.0. The K m and V max towards caseinolytic activity were found to be 2.7 mg/ml and 3 μmol/min, respectively. The protease was most active at 60 °C and characterized as a metalloprotease because of its sensitivity to EDTA and 1,10-phenanthroline. It was tested positive for elastase activity towards elastin–orcein, thus appears to be an elastase, which is known as pseudolysin in other strains of P. aeruginosa. The protease withstands range of detergents, surfactants and solvents. It is stable and active in all the solvents having log P above 3.2, at least up to 72 h. These two properties make it an ideal choice for applications in detergent formulations and enzymatic peptide synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.