Abstract
A novel glutathione peroxidase, which is active toward hydroperoxides of phospholipid in the presence of a detergent, has been purified to homogeneity from a rat liver postmicrosomal supernatant fraction by ammonium sulfate fractionation and three different column chromatographies. From a DE52 column, glutathione peroxidase active toward phosphatidylcholine dilinoleoyl hydroperoxides was eluted in one major and two minor peaks. The enzyme in the major peak was found to be separated from the "classic" glutathione peroxidase and glutathione S-transferases and further purified by Sephacryl S-200 and Mono Q column chromatographies. The purified enzyme was found to be homogeneous on polyacrylamide gel electrophoresis under nondenaturing conditions as well as that in the presence of sodium dodecyl sulfate. The molecular weight of the enzyme as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 22,000, and that by gel filtration was comparable, indicating that the enzyme protein is a single polypeptide. The purified enzyme was found to catalyze the reduction of phosphatidylcholine dilinoleoyl hydroperoxides to the corresponding hydroxy derivatives. The isoelectric point of the enzyme was found at pH 6.2, and the optimum pH for the enzyme activity was 8.0. The enzyme was active toward cumene hydroperoxide, H2O2, and 1-monolinolein hydroperoxides in the absence of a detergent. The enzyme activity toward phospholipid hydroperoxides was minute in the absence of a detergent but was remarkably enhanced by the addition of a detergent. From these results, the presently purified enzyme is obviously different from the classic glutathione peroxidase and also from phospholipid hydroperoxide glutathione peroxidase purified from pig heart (Ursini, F., Maiorino, M., and Gregolin, C. (1985) Biochim. Biophys. Acta 839, 62-70), though considerably similar to the latter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.