Abstract
Recently, cuprous halide perovskite-type materials have drawn tremendous attention for their intriguing optical properties. Here, a zero-dimensional (0D) Cu(I)-based compound of [(C3H7)4N]2Cu2I4 ([C3H7)4N]+ = tetrapropylammonium cation) was synthesized by a facile solution method, a monoclinic system of P21/n symmetry with a Cu2I42- cluster as the confined structure. The as-synthesized [(C3H7)4N]2Cu2I4 exhibits bright dual-band pure white emission with a photoluminescence quantum yield (PLQY) of 91.9% and CIE color coordinates of (0.33, 0.35). Notably, this compound also exhibits an ultrahigh color rendering index (CRI) of 92.2, which is comparable to the highest value of single-component metal halides reported recently. Its Raman spectra provide a clear spectral profile of strong electron-phonon interaction after [(C3H7)4N]+ incorporation, favoring the self-trapped exciton (STE) formation. [(C3H7)4N]2Cu2I4 can give dual-STE bands at the same time because of the Cu-Cu metal bond in a Cu2I42- cluster, whose populations could be scaled by temperature, together with the local dipole orientation modulation of neighboring STEs and phase transition related emission color coordinate change. Particularly, the outstanding chemical- and antiwater stability of this compound was also demonstrated. This work illustrates the potential of such cuprous halide perovskite-type materials in multifunctional applications, such as lighting in varied environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.