Abstract

AbstractAb initio configuration interaction through‐space/bond interaction analysis was proposed for the examination of specific intramolecular interactions including the effect of electron correlations. To test the effectiveness of our method, we applied it to rotational barrier in ethane. The results of our test suggest that the insensitivity of the ethane barrier to geometric relaxations is intimately connected with the cancellation of interactions through orbital overlaps and other factors. The orbital overlaps include exchange repulsion and hyperconjugation; other factors include classic Coulomb interaction and changes in bond orbital energy. The rotational state without the barrier (pure through‐bond state) can be achieved by deleting not only the “vicinal” interactions between the CH bonds that belong to different methyl groups but also the “geminal” interactions within the methyl groups. Our mixing analysis of molecular orbitals supports the superiority of the staggered conformer by hyperconjugation. Moreover, it was demonstrated that our treatment could be applied to excited states as well as to the ground state, including electron correlation effects. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.