Abstract

A torsion-free module M of finite rank over a discrete valuation ring R with prime p is co-purely indecomposable if M is indecomposable and rank M = 1 + dim R/pR (M/pM). Co-purely indecomposable modules are duals of pure finite rank submodules of the p-adic completion of R. Pure submodules of cpi-decomposable modules (finite direct sums of co-purely indecomposable modules) are characterized. Included are various examples and properties of these modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.