Abstract

Nontrivial polarization textures have been demonstrated in ferroelectric/dielectric superlattices, where the electrostatic, elastic, and different gradient energies compete in a delicate balance. When PbTiO3/SrTiO3 superlattices are grown on DyScO3, the coexistence of ferroelectric domains and vortex structure is observed for n = 12-20 unit cells. Here, we report an approach to achieve single-phase vortex structures in superlattices by controlling the epitaxial strain using Sr1.04Al0.12Ga0.35Ta0.50O3 substrates. The domain width follows Kittel's law with the thickness of the ferroelectric PbTiO3 layers. A phase transition from vortex to a disordered phase with temperature is characterized by the correlation length. Resonant soft X-ray diffraction circular dichroism at the titanium L-edge reveals enhanced chirality with the thickness of the ferroelectric layer. These results are supported by second-principles simulations, which demonstrate that the integrated helicity increases with n. The stabilization of chiral single-phase polar vortices in ferroelectric/dielectric superlattices can enable novel optoelectronic devices with enhanced ferroelectric-light interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.