Abstract

Tamm plasmons (TPs), whose plasmon modes are confined at the Bragg reflector/metal interface due to the photonic stopband of the reflector and the negative dielectric constant of the metal, exhibit many advantages over the conventional surface plasmons (SPs) and potential applications in sensors, filters, optical circuits and light-emitting devices. In this paper, a TP-cavity structure has been proposed for accelerating the light emission and alleviating the large metal loss, which is hopeful for solving the efficiency droop and "green gap" problems in InGaN green light-emitting diodes (LEDs). The light emission performance of TP-cavity LEDs was systematically investigated based on transfer matrix and finite-difference time domain methods. Purcell factor (Fp) and light extraction efficiency (LEE) were both remarkably enhanced, which would be attributed to the presence of the TP and/or SP modes induced by the TP-cavity structure. In addition, two important factors including the thicknesses of the top Ag film and medium layer were investigated in detail and taken into account for the balance between the Fp and the LEE. Finally, light emission intensity was significantly enhanced for the TP-cavity green LEDs after the structure optimization as compared to the conventional green LEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.