Abstract

Sheet metal hydroforming has gained increasing interest during last years, especially as application in the manufacturing of some components for: automotive, aerospace and electrical appliances for niche productions. Different studies have been also done to determine the optimal forming parameters making an extensive use of FEA. In the hydroforming process a blank sheet metal is formed through the action of a fluid and a punch. It forces the sheet into a die, which contains a compressed fluid. Many studies have been focused on the analysis of process and geometric parameters influence about the hydroforming process of a single product with main dimensions till to 100 mm. In this paper the authors describe the results of an experimental activity developed on two different large sized products obtained through sheet metal hydroforming. Different geometric and process parameters have been taken into account during the testing phase to study, in particular, the punch radius influence on the process feasibility. An ANOVA analysis has been implemented to study the influence of geometrical and process parameters on the maximum hydroforming depth. Through this work it has been possible to verify that in the hydroforming process of large size products geometry and, in particular, punch radius, are some of the main factors that influences the feasibility of the products. Different considerations can be made about the effects of the blankholder force and the fluid pressure on the maximum hydroforming depth. As further developments, the authors would perform a numerical study in order to enlarge the knowledge of the process design space to other possible values of the punch radius.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.