Abstract

Excessive groundwater withdrawal from an aquifer system leads to three-dimensional displacement, causing changes in the states of stress and strain. Often, land subsidence and sometimes earth fissures ensue. Field investigation indicates that land subsidence and earth fissures in Wuxi, a city in eastern China, are mainly due to excessive groundwater withdrawal, and that they are temporally and spatially related to groundwater pumping. Groundwater withdrawal may cause tensile strain to develop in aquifer systems, but tensile strain does not definitely mean tensile stress. Where earth fissures are concerned, the stress state should be adopted in numerical simulations instead of the strain state and displacement. The numerical simulation undertaken for the Wuxi area shows that the zone of tensile strain occupies a large area on the ground surface; nevertheless, the zone of tensile stress is very limited. The zone of tensile stress often occurs near the ground surface, beneath which the depth to the bedrock surface is relatively small and has considerable variability. Earth fissures often initiate near the ground surface where tensile stress occurs. Tensile stress and earth fissures rarely develop at the centers of land subsidence bowls, where compressive stress is dominant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.