Abstract

Defective apoptosis contributes to tumorigenesis, although the critical molecular targets remain to be fully characterized. PUMA, a BH3-only protein essential for p53-dependent apoptosis, has been shown to suppress lymphomagenesis. In this study, we investigated the role of PUMA in intestinal tumorigenesis using two animal models. In the azoxymethane (AOM)/dextran sulfate sodium salt model, PUMA deficiency increased the multiplicity and size of colon tumors but reduced the frequency of beta-catenin hotspot mutations. The absence of PUMA led to a significantly elevated incidence of precursor lesions induced by AOM. AOM was found to induce p53-dependent PUMA expression and PUMA-dependent apoptosis in the colonic crypts and stem cell compartment. Furthermore, PUMA deficiency significantly enhanced the formation of spontaneous macroadenomas and microadenomas in the distal small intestine and colon of APC(Min/+) mice. These results show an essential role of PUMA-mediated apoptosis in suppressing intestinal tumorigenesis in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.