Abstract

The mathematical basis for a computer code PUMA (Plutonium-Uranium-Matrix-Algorithm) is described. The code simulates steady-state concentration profiles of solvent extraction contactors used in the Purex process, directly without first generating the transient behavior. The computational times are reduced, with no loss of accuracy, by about tenfold over those required by codes that generate the steady-state profiles via transient state conditions. Previously developed codes that simulate the steady-state conditions directly are not applicable to partitioning contactors, whereas PUMA is applicable to all contactors in the Purex process. Since most difficulties are encountered with partitioning contactors when simulating steady-state profiles via transient state conditions, it is with these contactors that the greatest saving in computer times is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.