Abstract

Light emitting diodes (LEDs) have been gradually used for backlight modules for liquid crystal display as a substitute for cold cathode fluorescent lamps. In most of LED applications, it is required to connect several LED strings in parallel to limit the dc voltage level to be applied to the single LED string. Due to considerable current variations through each LED string with inevitable parameter deviations as well as temperature and ageing effects, techniques to balance currents flowing through LED strings are required for LED drivers. This article proposes a pulse-driven LED circuit with transformer-based current balancing scheme, which can simply regulate currents through the LED strings. The transformers are placed in series with the LED strings in such a way that the LED currents are automatically balanced. Since the developed current sharing technique employs no dissipative resistors and no linear-mode transistors, the proposed driver has high efficiency, low power dissipation and reduced thermal problems. In addition, the presented driver with no additional semiconductor devices and no additional controllers can provide a simple and a cost-effective current balancing solution, compared to conventional approaches. Thus, the proposed LED driver can feature a simple, highly efficient, reliable and cost-effective method. The presented LED driver is verified with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.