Abstract
We report on a collaborative test campaign conducted at the Naval Research Laboratory's Mercury pulsed power facility in December of 2012. The experiment sought to use Mercury in the Intense Pulsed Active Detection (IPAD) [1] mode to interrogate a fissionable material target (depleted uranium, DU) and benchmark the effects of shielding the target with either a low-Z (2% borated high-density polyethylene, BPE) or high-Z (steel) material. A large suite of instrumentation, including 3He, BF3, NaI(Tl), and liquid scintillation detectors were used to measure the delayed γ and neutron signatures from the DU. The test campaign consisted of a series of single IPAD pulses, i.e., “shots,” employing incremental shielding configurations of BPE (up to 50 g/cm2) and steel (up to 150 g/cm2) encapsulating the DU target. We show the results from each detector array, for varying amounts of shielding, in terms of the signal-to-noise vs. time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.