Abstract
ABSTRACTCalcium phosphate-based ceramics were deposited on Ti, Ti-6Al-4V and Si substrates by pulsed laser deposition. The calcium phosphate phase (amorphous, α- or β-tricalciumn phosphate, tetracalcium phosphate, or hydroxylapatite), Ca/P ratio and surface morphology of the films were related to deposition conditions. At substrate temperatures <400°C, films were amorphous. Above 400°C, the gaseous environment during deposition determined the crystalline phase of the films. In O2, deposition of α-tricalcium phosphate was favored between 400 and 700°C and β-tricalcium phosphate was favored above 700°C. Films deposited in low pressures of O2 (<0.05 Torr) were P-deficient. The correct stoichiometry was approached as the pressure of O2 in the chamber during deposition increased. In water vapor-enriched inert gas environments, deposition of hydroxylapatite was observed at temperatures between 400 and 700°C and tetracalcium phosphate was observed at temperatures above 700°C. The surface morphology of hydroxylapatite films depended on the temperature of deposition. Surfaces deposited at higher substrate temperatures showed more recrystallization than those deposited at lower substrate temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.