Abstract

We report on the mid-term stability progress of a table-top coherent population trapping (CPT) microcell atomic clock, previously limited by light-shift effects and variations of the cell's inner atmosphere. The light-shift contribution is now mitigated through the use of a pulsed symmetric auto-balanced Ramsey (SABR) interrogation technique, combined with setup temperature, laser power, and microwave power stabilization. In addition, Ne buffer gas pressure variations in the cell are now greatly reduced through the use of a micro-fabricated cell built with low permeation alumino-silicate glass (ASG) windows. Combining these approaches, the clock Allan deviation is measured to be 1.4 × 10-12 at 105 s. This stability level at one day is competitive with the best current microwave microcell-based atomic clocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.